Important PostgreSQL Parameters: Understanding Their Importance and Recommended Values

Have you ever experienced your database slowing down as the amount of data increases? If so, one important factor to consider is tuning PostgreSQL parameters to match your specific workload and requirements.  PostgreSQL has many parameters because it is designed to be highly flexible and customizable to meet a wide range of use cases and workloads. Each parameter allows you to fine-tune different aspects of the database, such as memory management, query optimization, connection handling, and more. This flexibility helps database administrators to optimize performance based on hardware resources, workload requirements, and specific business needs. In this blog, I will cover some of the important PostgreSQL parameters, explain their role, and provide recommended values to help you fine-tune your database for better performance and scalability.  Memory-Related Parameters Memory-related parameters in PostgreSQL control how the database allocates and manages memory. Tuning these settings is important for improving query performance and preventing resource bottlenecks. Name: work_mem Description: Sets the maximum amount of memory used by internal operations like sorts and hashes before writing to disk. Increasing it can improve performance for complex queries Default: 4MB Recommended: Typically, setting work_mem to 1-2% of the total system's available memory is recommended, i.e., if the total system memory is 256 GB, assign 3 to 5 GB for work_mem. Note: This may lead to higher memory usage for operations that involve sorting. Name: shared_buffers Description: Determines the amount of memory allocated for caching database data. Default: 128MB Recommendation: Typically, setting shared_buffers to 25-40% of the total system memory is recommended, i.e., if the total system memory is 256 GB, assign 64-102 GB for shared_buffers. Name: maintenance_work_mem Description: Specifies the amount of memory used for maintenance operations like VACUUM, CREATE INDEX, and ALTER TABLE. Increasing it can speed up these operations. Default: 64MB Recommendation: it's recommended to set 5-10% of the total system memory, i.e., if the total system memory is 256 GB, assign 13 to 26 GB for maintenance_work_mem.
Read More

A Guide to Restoring a PostgreSQL Database from Disaster Using Azure Flexible Server

Backups are crucial for any mission-critical application as they protect against unforeseen disasters. Regular backups help minimize the Recovery Point Objective (RPO), allowing systems to recover quickly with minimal data loss. However, it's equally important to store backups safely. If backups are kept in the same location as the primary site and something goes wrong, you may have no way to recover, leading to complete data loss. To reduce these risks, many organizations choose fully managed servers to host their databases. One popular option is Azure Flexible Server for PostgreSQL, which offers a reliable, scalable, and managed solution.  Azure provides 3 levels of redundancy in three different ways, and not only that, you can recover backups using these same three methods. These are Locally Redundant Storage Zone Redundant Storage Geo Redundant Each level of redundancy offers unique advantages when it comes to restoring backups. In today's blog, we will explore all three types of backups and recovery methods. We will dive into the differences between each type and learn how to restore your backup if your primary site goes down.
Read More